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Abstract 
 

In this work we have taken our cue from the remarks made by the author B.M. Weon [18-22] in order to study the 
existence, or not, of a mathematical limit of longevity. Starting from the remarks made by the author, our purpose 
was to find a different survival function and therefore a new model (Pasqualitto Model) to replicate the analysis 
he conducted with reference to the mortality tables of the Italian population for the period 1950-2006. The choice 
of a different function was carried out in order to identify a model which, with reference to the analysis conducted 
by us, would better fit to the actual data, especially in relation to older ages, ages that, from a demographic point 
of view, have always been critical to be represented and synthesized by a suitable model. 
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Introduction 
 

The variation of longevity over time has always been a big brain teaser for scientists and academics who deal with 
this topic, being a theme that encompasses and affects many areas, from the purely medical to that of applied 
mathematics. Indeed, the evolution of longevity is the basis of many actuarial calculations, and cannot be 
underestimated for the economic consequences that may arise at the expense of several insurance companies, as a 
result of an incorrect and not adequate estimate of the phenomenon itself. At present we can say that many of the 
traditional methods used for the study of the mortality evolution over time, such as for example the Gompertz 
model [4], the Weibull model [17], the Heligman & Pollard model, namely Quadratic and Logistic-type models, 
have demonstrated a low capacity to adapt to the real data of the population, especially with regard to older ages 
as amply demonstrated by some authors [13], [25]. Among the models listed above we can say that those who 
currently find greater application [3], are the Gompertz model (Gompertz, 1825) and the Weibull model (Weibull, 
1951). In particular, from recent studies [2], [3] emerges that the Gompertz model is most commonly used to 
describe biological systems, while the Weibull model is more commonly used for technical devices. 
 

Traditionally, the law of survival described by the Gompertz model is the following [23]: 
 
 

 
(1) 

 
where a and b are constant, while for the Weibull model we have [10]: 
 

 
 

(2) 
 

with α and β constant and β also called shape parameter. From the models described above clearly emerges that 
the mortality rate increases exponentially in time with increasing age (indicated with x), with relation to older 
ages. However, empirical analysis has shown that, just with reference to older ages, these models show the most 
obvious gaps. This discrepancy between theoretical models and real data is precisely the crucial point that gave 
rise to numerous debates between scientists and academics in order to identify the best models that could more 
correctly describe the entire survival curve. In fact, what seems to be more difficult to interpret, is just the 
phenomenon of rectangularization, that still seems to have been only partially satisfactorily explained as based on 
interpretations and results deriving from inappropriate models [1]. In order to overcome this difficulty Weon, in 
his various works [18-22], developed a model with a  β(x) shape parameter, x age-dependent, able to describe the 
survival function, the curve of mortality and, more in detail, the decrease of the same in relation to older ages. 
 



ISSN 2162-1357 (Print), 2162-1381 (Online)           © Center for Promoting Ideas, USA             www.ijbhtnet.com 
 

34 

The Weon Model 
 

The Weon model directly derives from the Weibull model and, for the survival function, assumes the following 
expression: 
 

 
 

(3) 
 

From which emerges that it is fully described by only two parameters: α (also called life characteristic) and β(x), 
the shape parameter that, unlike the Weibull model, is no longer constant but variable, depending on age. Let’s 
now more fully describe these two parameters. α was defined as the characteristic life and is usually interpreted as 
the age for which is: 
 

  (4) 
 

In the Weon model we have that = 36, 79%, which means that at the age about the 37% of the 
population under consideration is still alive. 
 

β(x) instead, shows the shape parameter of the survival function and is known to be a function of age. This 
assumption derives from Weons’ direct observation of the survival function which, with increasing age, shows the 
following trends: 
 

1) A rapid decline in survival during the first 5 years; 
2) A relatively constant decline with increasing age; 
3) A sharp decrease in the years near death. 
 

As noted by Weon, the trend described in point 1) for the survival function is similar to that described by the 
Weibull function when . The trends described in paragraphs 2) and 3) seem instead to describe the survival 
function according to the Weibull model when , that’s why this suggested to the author the hypothesis of 
the presence of a shape parameter that was not constant, but age-dependent. More in detail the  shape 
parameter whose expression can be directly derived from the survival function through the relation: 
 

  (5) 
 

Actually indicates the rectangularization of the survival function because the higher is the value of this parameter, 
the more the survival function assumes a rectangular shape. It should also be noted that the value of  tends to 
be infinite when the x age tends to  or, in other words, when the  denominator tends to 0, this 
mathematically means that  represents a singular point for the  function. Weon has shown in his works that 
if you can find a suitable function able to describe the behaviour of the  parameter (except at the point of 
singularity ), then you can mathematically calculate both the survival function and the mortality function. 
Dwelling on a purely practical aspect, the description of the survival function as a whole turns out to be quite 
complex, that’s why Weon, in order to consider and study the rectangularization of the same, divided it into three 
distinct phases. The first phase is called developmental phase (below 30 years), where one normally observes a 
significant increase of the  shape parameter. The second phase, called mature or middle age phase, between 
30-70, instead shows how the expression of  can be adequately described by a linear- type expression. The 
third phase called senescence phase, that goes from the characteristic α age to the extreme age, can instead be well 
represented by a quadratic function: 
 

 
 

whose coefficients were determined by a regression analysis in the plot of the shape parameter curve.  
By virtue of what pointed out above, the first derivative of  is obtained as follows: 
 

 
And represents a result that will be useful in the calculation of the mortality function. Let’s consider what are the 
main differences about the wording of the mortality law, according to the Gompertz model and the Weon model.  
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In the Gompertz model you assume that the mortality rate increases exponentially in time when age increases in 
the senescence phase, however, some authors have shown that is not demonstrable with certainty whether the 
mortality level increases or decreases in the older ages [14], [16], [12] and [7]. 
 

With the suggested model, Weon, by means of the quadratic expression given to the shape parameter, is instead 
able to demonstrate that the mortality rate necessarily decreases after a ρ plateau, approximately reaching 0. More 
in detail this ρ plateau represents the maximum value of the mortality function after the characteristic life α and 
can be thus identified: 
 

 
 

(6) 
 

In general Weon has shown that his model approximates that of Gormpertz when  , on the contrary, the 
mortality rate differs from that provided for by the Gompertz model when   hasn’t got a linear-type 
behaviour. Therefore Weon suggests that the  parameter can actually be a measure of the deviation from the 
Gompertz model at older ages. In particular, as it was described, the Weon model is nothing more than a 
generalization of both the Gompertz model and the Weibull model. More in detail, the Gompertz model is a 
special case of the Weon model, in the hypothesis that  is linear and the Weibull model is also a special case 
of the Weon model when the shape parameter is constant. Once determined the mathematical function able to 
approximate the shape parameter, we have seen that, through the Weon model, one can mathematically calculate 
both the survival function and the  mortality function. 

Remembering indeed that , for the Weon model we will have that: 

 

 
 

(7) 

or, in perfectly equivalent terms: 
 

 
 

(7.1) 
 

Once known the survival function and the mortality function you can calculate the density function as follows: 
 

  (8) 
 

That describes the distribution of life probability for a given population. Now let's see how Weon proceeds to 
calculate the limit of longevity. The most common assumption underlying this idea is that there should be some w 
age limit beyond which there are no more survivors; this can be represented by one of the following three 
expressions , ,  
 

However, what Weon demonstrated with his model, suggests that the survival function will never be equal to 0, 
even if it takes extremely low values at older ages, whereas the mortality function may be 0 in correspondence to 
the maximum longevity, therefore the three conditions seen above may simply be reduced to two, namely to 

,  or . On the other hand what the author states is that the rate of growth of the survival 
function defined as: 
 

 
 

Should be 0 at the maximum longevity, so ultimately the author assumes that the maximum longevity besides 
being expressed by the two conditions stated above, can also be expressed by this third condition, namely: 
 

 
 



ISSN 2162-1357 (Print), 2162-1381 (Online)           © Center for Promoting Ideas, USA             www.ijbhtnet.com 
 

36 

According to these remarks Weon identifies the maximum longevity “as the moment in which the trajectories of 
the survival function levels off or, in other words, the trajectories of mortality become null”. At this point let’s 
illustrate, the procedure employed by Weon in order to define the mathematical limit of longevity. Let’s return to 
the expression for  indicated by (7.1). In order for his analysis, Weon separately considers the effects of the 
two mathematical terms on mortality: 
 

 
 

More in detail, the result must be that . 
Being the term: 
 

 
 

Then the result will have to be: 
 

 
 
 

namely: 
 

 
 

(9) 

 

Having approximated the value of  with a quadratic function makes it easy to solve the equation stated 
above. Through this approximation Weon shows that: 
 

 The coefficient of the  quadratic term "supports the bending of the shape parameter". 
  is directly associated with the deceleration of mortality. 
  Allows to evaluate the longevity limit because it is the bending with respect to the age of the first 

derivative of . 
 

Weon’s results show that the C term is decreasing with the x age and its bending becomes steeper over the years. 
On the contrary the D term increases with age and thus the steeper becomes the C term, the more reduced is the 
longevity limit over the years. The use of this approach, which arises from a comparison between the C and D 
terms, suggested to Weon the idea that there is a w longevity limit, linked to  by an exponential-type 
relationship. 
 

Our Model: The Pasqualitto Model 
 

Starting from the analysis and conclusions reached by Weon, we carried out a more detailed analysis of the Italian 
situation. In particular, we made reference to the data provided by the Human Mortality Database website 
(www.mortality.org) for the Italian population (both sexes) from 1950 to 2006. The length of the time series 
under consideration is the result of the decision to avoid that our analysis could be affected by anomalous values 
such as those produced by the world wars on mortality. The S survival probability is defined as a    fraction of 

the  number of survivors out of 100000  persons in the original life tables. While maintaining the quest for the 
longevity limit according to the procedure described by Weon, our goal was to find a suitable model that would fit 
better to real data, especially in relation to older ages. Let’s then proceed to analyze what suggested by us. With 
reference to the time series examined by us, we have found that the S(x) function suggested by Weon, while 
adapting well to the characteristics of our population, could still be susceptible to further improvements, 
especially with reference to older ages. Our first purpose was therefore to find a different survival function that 
would allow a quadratic approximation for older ages, better than the one suggested in the Weon model.  
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After several attempts at modelling and subsequent testing, we identified the following representation for the 
survival function: 
 

 

 

(10) 

 

with: 
 

k and c constant, determined by appropriate boundary conditions; 
β(x) age-dependent shape parameter; 
α characteristic life; 
 

You should note that for c =0 and k =1 our survival function coincides with that of Weon. The first step we made 
was to obtain  starting from the hypothesized survival function. Through a series of simple mathematical 
passages we have: 
 

 

 

(11) 

 

As already pointed out by Weon in his works, also in the Pasqualitto Model we see that the  function tends to 
infinity when x age tends to  or, in other words, when the  denominator tends to 0, therefore also in our 
model , the characteristic life, represents a singular point for the  function. Having established this, let’s now 
proceed to calculate . We define the boundary conditions on  and  in order to identify the characteristic 
life. For S(x) we have that: 
 

if x = 0 then S (0)=1 and therefore k = (1+c); 
 

For we have to verify the following conditions: 
 

 
 

and 
 

 
 

Therefore: 
 

 
That is translated into: 
 

 
 
 

Using the condition on S and the two previous conditions, we have that: 
 

 
 

So for x different from 0, it follows that k = 1 + c. 
For x = α the (10) is equal to: 
 

 
 

(11.1) 
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This value is equal to 0,368 (36.8%) in the Weon model, to which corresponds k =1 and c = 0. We have already 
said that the value of the survival function calculated for x = α represents the percentage of survivors existing 
exactly at that age. By suitably choosing the value of c (and therefore k) in our survival function is possible to 
determine the value of the characteristic life. We decided to set c = 1, and then k = 2, therefore the survival 
function becomes: 
 

 

 

(12) 

 

In our model the survival function in correspondence to the α characteristic life is: 
 

 
 

(13) 

against a value of 36.8% identified by the Weon function. We have already said that the value of the survival  
 

function calculated for x =  represents the percentage of survivors exactly existing at that time. 
 

We should also remark how the value of the survival function assumes for our model values closer  to another 
indicator often used in literature for demographic analysis and purposes, such as that of the average life which we 
have for a value of x such that S(x) = 50% . This has been another element that helped us in the choice of the 
constants c and k. 
 

As already mentioned by Weon, in order to identify the value of the characteristic life for the time series studied 
by us, you just need a careful observation of both the graph of the survival function and the graph of shape 
parameter, for which is possible to immediately identify the behavior that the characteristic life has had over the 
years, representing for this a singular point, (see Figure 1). 
 

 
 

Figure 1: Trend of characteristic life 1950-2006 
 

What can be seen from Figure 1 is how characteristic life  has gradually increased over time and this is 
undoubtedly attributable to the improvement occurred in the economic and social conditions and to medical 
progress in general, which have led to an increase in life expectancy over the years.  

 S(α) = 53,78% (13.1) 
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To determine the numerical value of , for the different years, we have followed the following procedure. From 
the graphical analysis of the survival functions we have found that the value of the characteristic life is between 
65 and 90 years. In this age range the survival function can be approximated by a function of second degree: 
 

  (14) 

The a, b and c terms were obtained through a polynomial regression of each survival curve in the age 65-90. 
Such approximation involves an extremely low error for all the examined years. By way of example, we have 
reported in Figure 2 the index R2 for some years of the time series under consideration. 
 

 
 

Figure 2:  Fitting of the second degree functions compared to the survival functions 
 

According to what defined above, once known the value of the survival function in correspondence of , we were 
able to calculate α, thanks to equality: 
 

 
 

Of the two solutions obtained, we obviously discarded the one outside the interval 65-90, see Figure 3. 
 

 
 

Figure 3:  Characteristic life 1950-2006 
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Once  is found is therefore possible to proceed with the calculation of the (x) shape parameter in 
correspondence to the different age groups, as identified by the formula (11). Let’s now examine, also for our 
model, the calculation of the limit of longevity:  
 

Once known the survival functions, we provided for calculating the  intensity of mortality through the 
following relation: 
 

 
For our survival function, after appropriate calculations we will have that: 
 

 
 

(16) 
 

 

From the formula (16) it is plain that, in order to calculate the intensity of mortality, we need the first derivative of 
the shape parameter. The problem that arises now is to find a function able to approximate the trend of .  
Let’s go back to what Weon said about it in his works. We observed the behaviour of the shape parameter 
immediately after the characteristic life  and up to the extreme age, being  a point of singularity for . The 
result of the graphic analysis is that the trend of the  shape parameter, as for the Weon model, can be 
described by a quadratic relationship: 
 

 
 

in which the values of , ,  were obtained by making a quadratic regression on the values of β from age x > 
 
It must be highlighted that the quadratic approximation for the  is valid for x > α. The α of our model assume 
lower values than those calculated by Weon because: 
 

. 
 

Nevertheless the fitting of the function  and S(x) led to a better approximation and thus to very precise 
calculations. By way of example we reported in Figure 4 the index R2 for some years of the time series considered 
by us for the function S (x) for x> α. 
 

 
 
 

Figure 4 : Fitting of the survival functions for x>α 
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By virtue of the expression of , it follows that: 
 

 
 

Therefore, once we know and , we have all the elements necessary to calculate the value of the w 
extreme age. First it will always have to be:  , so let's see what are the necessary conditions for this to 
occur. With reference to the formula (16) is always verified that: 
 

 
 

 
Therefore  if  that is if: 
 

 
 

(17) 
 

Let’s replace  and  with their expressions and we will have: 
 

 
 

from which: 
 

 

 

(18) 

 

To this purpose we report some graphs illustrating the obtained results: 
 

 
 

Figure 5: Demographic trajectories and singular points for italian population, 2000 
 

In Figure 5 we reported some specific points that are found in our analysis. We already defined the characteristic 
life and how this can be highlighted by a graphical analysis of the survival function and by the corresponding 
graph of the shape parameter, representing for this a point of singularity. We also note the presence of two 
particular points: 
 

 a point v that represents the maximum value assumed by the shape parameter after the characteristic life; 
 a point  that represents instead the maximum value of the mortality function after the characteristic life. 
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In particular, in the two graphs on the right, we reported the density function and the mortality function only after 
the α characteristic life, age from which we provided for calculating the longevity limit. By the study of these two 
trajectories is possible to define the ultimate limit of longevity, being this the point where  or . 
For the year 2000 we have that w ≈ 130 years. Taking now into consideration the entire time series examined by 
us, we said that the longevity limit is recognizable when the following condition occurs: 
 

 
 

We provided for a graphical representation of the above mentioned points in order to identify how this limit has 
changed over the years. Note the following figure: 
 

 
 

Figure 6: Mathematical Limit, 1950-2006 
 

What is evident is that the C term tends to decrease with increasing age, on the contrary the D term increases (in 
absolute value) with increasing age. The specific trends of these two points over the years make us therefore say 
that the limit of longevity has decreased over time. The useful information for the calculation of the limit to 
longevity is provided by the quadratic coefficient of the  shape parameter, which embodies a lot of information. 
It is known that the quadratic coefficient describes the curvature of the shape parameter and this curvature 
represents the deceleration of mortality over the years. It also represents the bending with respect to the age of the 
first derivative of , for which it also provides a measure of the velocity with which the  parameter varies 
according to age in a given reference year and therefore represents the velocity with which the phenomenon of the 
rectangularization of the survival function has changed over time. 
 
 

In confirmation of what has been said we have represented the slope of the shape parameter in the middle age, see 
Figure 7. The figure shows that over time there has been a sort of saturation of this slope, and this may suggest the 
presence of a possible limit to the phenomenon of longevity. Namely, seems to exist a limit distribution that over 
time the curve of mortality can achieve but not exceed. 
 

 
 

Figure 7: Slope of the shape parameter 
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In order to proceed then to the numerical calculation of the limit of longevity (ultimate limit of longevity), we 
calculated through (18) the value of w for each year under consideration and we represented the trend as a 
function of , (see Figure8 ). 
 

 
 

Figure 8: Longevity trend 
 

In Figure 8 you can see that the quadratic relation between the quadratic coefficient and the w limit of longevity 
can be well approximated by an exponential-type relation (R2=98,1%): 
 

 
Represented in the Figure by the green series. Being  negative, the ultimate limit of longevity is obtained for 

 and is set almost equal to 105 years. In fact, if we compare this value with that obtained by Weon [21] 
and [22] for Italy (116 years for women at 2005, about 125 years for both sexes and for a dataset that goes from 
1996 to 2001) we see that the Pasqualitto Model provides a lower estimate of this limit and, in our opinion, more 
in line with those that are realities objectively verifiable on real data. You must moreover consider that the 
demographic tables used in our analysis refer to the total population, both males and females, and there is no 
doubt that the higher male mortality and the wider time horizon under consideration necessarily affect the result 
with downward values. 
 

In support of this analysis, in Appendix 1 we reported a list of ultra centenarians in Italy, namely a list of the 
number of people over 110 years old (Source: Wikipedia updated 14.02.2012). Indeed it follows that to date only 
106 people are actually over 110 years old (of which only 6 are still alive: 5 women and 1 man) and this concerns 
individuals born between 1860 and 1901, of which 98 women and only 8 men.  
 

We also point out how the extreme value of longevity however roams around an average value just over 110 
years, confirming that, in any case, are not recognizable extreme values of longevity however exceeding that 
amount. Having moreover taken cognizance in our analysis that the limit of longevity has gradually decreased 
over time, we must point out that demographic changes are however rather slow by nature, such as the recognition 
of possible trends requires long periods rather than short ones. For all these considerations it therefore seems 
reasonable the extreme value of about 105 years achieved in our work as ultimate limit of longevity, since we 
referred to time series for the Italian population starting from 1950, that is, about a century after the first ultra 
centenarian reported in the appendix, who in fact was born in 1860. 
 

Results 
 

The evolution of longevity is behind a number of actuarial calculations and cannot be underestimated for the 
economic consequences that may arise within the several insurance companies as a result of an improper and not 
adequate estimate of the phenomenon itself. Referring to the methodology used by Weon for the search of the 
limit of longevity, our goal was to identify a new function that would approximate that of survival at older ages, 
ages that have always been demographically critical to be represented and synthesized by an appropriate model. 
Starting from the analysis and conclusions reached by Weon in his works, we wanted to carry out a more detailed 
analysis of the Italian situation.  
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In particular, we referred to data provided by the Human Mortality Database website (www.mortality.org) for the 
Italian population (both sexes) from 1950 to 2006. The length of the time series under consideration is the result 
of the decision to avoid that our analysis could be affected by anomalous values such as those produced by the 
world wars on mortality.   
 

Considering this time series we have noted, through numerical analysis and simulation exercises that the function 
S (x) produced by Weon, while adapting well to the characteristics of our population, could still be susceptible to 
further improvements especially with reference to older ages. Our analysis led us to the function (approximating 
that of survival) given by the following relation: 
 

 
 

In which it is clear that the same is completely defined by the value of only two parameters: α called characteristic 
life and , called shape parameter which, unlike traditional models, is no longer constant but age-dependent 
and provides a measure of the rectangularization that the survival function has had over time. Through appropriate 
passages we have seen that for ages x> α the shape parameter can be approximated by a quadratic relation and 
was just the knowledge of the quadratic coefficient of this relation, , to provide us with a useful indication 
about the existence or not of an ultimate limit of longevity. In particular, the performed analysis has shown how 
the ultimate w limit of longevity can be well approximated by an exponential-type relationship defined as follows 
(R2=98, 1%): 
 

 
 

Finally, being  negative, the ultimate value of the mathematical limit of longevity is obtained for  
and is set approximately equal to 105 years. In fact, if we compare this value with that obtained by Weon [21] and 
[22] for Italy (116 years for women at 2005, about 125 years for both sexes and for a dataset that goes from 1996 
to 2001) we see that the Pasqualitto Model provides a lower estimate of this limit and, in our opinion, more in line 
with those that are realities objectively verifiable on real data.  
 

You must moreover consider that the demographic tables used in our analysis refer to the total population, both 
males and females, and there is no doubt that the higher male mortality and the wider time horizon under 
consideration necessarily affect the result with downward values. In support of this analysis, in Appendix 1 we 
reported a list of ultra centenarians in Italy, namely a list of the number of people over 110 years old (Source: 
Wikipedia updated 14.02.2012). 
 

Indeed it follows that to date only 106 people are actually over 110 years old (of which only 6 are still alive: 5 
women and 1 man) and this concerns individuals born between 1860 and 1901, of which 98 women and only 8 
men.  
 

We also point out how the extreme value of longevity however roams around an average value just over 110 
years, confirming that, in any case, are not recognizable extreme values of longevity however exceeding that 
amount. Having moreover taken cognizance in our analysis that the limit of longevity has gradually decreased 
over time, we must point out that demographic changes are however rather slow by nature, such as the recognition 
of possible trends requires long periods rather than short ones.  For all these considerations it therefore seems 
reasonable the extreme value of about 105 years achieved in our work as ultimate limit of longevity. 
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APPENDIX 1 
 

N. Sex Date of birth (dd/mm/yyyy) Date of death(dd/mm/yy) Years e Days 
1 F 16/09/1860 23/06/71 110 Years, 280 Days 
2 F 19/03/1863 05/04/73 110 Years, 17 Days 
3 F 30/04/1867 17/04/78 110 Years, 352 Days 
4 F 14/05/1875 03/05/86 110 Years, 354 Days 
5 M 10/05/1880 22/05/91 111 Years, 12 Days 
6 F 7/10/1880 20/02/91 110 Years, 136 Days 
7 F 17 /10/1880 10/01/91 110 Years, 85 Days 
8 F 1 /03/ 1881 06/03/92 111 Years, 5 Days 
9 F 14 /06/ 1881 12/11/91 110 Years, 151 Days 
10 F 1º /08/ 1882 07/01/93 110 Years, 159 Days 
11 F 12 /09/ 1883 16/10/93 110 Years, 34 Days 
12 F 11 /10/ 1883 10/12/95 112 Years, 60 Days 
13 F 8 /08/ 1885 04/10/95 110 Years, 57 Days 
14 M 2 /01/1886 01/01/97 110 Years, 365 Days 
15 F 9 /07/ 1886 06/06/97 110 Years, 332 Days 
16 F 1 /04/ 1887 06/01/98 110 Years, 280 Days 
17 M 6 /07/ 1887 28/08/98 111 Years, 53 Days 
18 F 10 /08/ 1887 01/12/97 110 Years, 113 Days 
19 F 11 /10/ 1887 16/06/98 110 Years, 248 Days 
20 F 28 /05/ 1888 16/07/98 110 Years, 49 Days 
21 F 19 /11/ 1888 04/02/99 110 Years, 77 Days 
22 M 22 /01/1889 03/01/02 112 Years, 346 Days 
23 F 20 /02/ 1889 21/05/99 110 Years, 90 Days 
24 F 2 /12/ 1889 14/05/03 113 Years, 163 Days 
25 F 8 /12/ 1889 31/01/00 110 Years, 54 Days 
26 F 25 /12/ 1889 07/01/00 110 Years, 13 Days 
27 F 13 /02/ 1890 25/05/01 111 Years, 101 Days 
28 F 30 /04/ 1890 05/02/01 110 Years, 281 Days 
29 M 29 /12/ 1890 19/06/03 112 Years, 172 Days 
30 F 6 /07/ 1891 04/01/02 110 Years, 182 Days 
31 F 19 /11/ 1891 09/01/02 110 Years, 51 Days 
32 F 28 /11/ 1891 06/01/02 110 Years, 39 Days 
33 M 8 /12/ 1891 01/04/02 110 Years, 114 Days 
34 F 24 /12/ 1891 28/12/05 114 Years, 4 Days 
35 F 10 /01/1892 23/02/03 111 Years, 44 Days 
36 F 26 /02/ 1892 20/05/03 111 Years, 83 Days 
37 F 29 /03/ 1892 02/01/05 112 Years, 279 Days 
38 F 2 /08/ 1892 18/09/03 111 Years, 47 Days 
39 F 15 /09/ 1892 25/12/02 110 Years, 101 Days 
40 F 2 /12/ 1892 14/08/04 111 Years, 256 Days 
41 F 12 /02/ 1893 06/02/04 110 Years, 359 Days 
42 F 9 /06/ 1893 01/01/05 111 Years, 206 Days 
43 F 24 /07/ 1893 13/10/03 110 Years, 81 Days 
44 F 15 /09/ 1893 04/09/06 112 Years, 354 Days 
45 F 10 /10/ 1893 29/03/06 112 Years, 170 Days 
46 F 13 /10/ 1893 29/11/04 111 Years, 47 Days 
47 M 12 /11/ 1893 16/03/04 110 Years, 125 Days 
48 F 12 /05/ 1894 04/11/05 111 Years, 176 Days 
49 F 17 /05/ 1894 29/03/05 110 Years, 316 Days 
50 F 19 /06/ 1894 16/01/05 110 Years, 211 Days 
51 F 7 /08/ 1894 11/01/07 112 Years, 157 Days 
52 F 1 /10/ 1894 30/04/05 110 Years, 211 Days 
53 M 23 /12/ 1894 22/01/05 110 Years, 30 Days 
54 F 23 /02/ 1895 03/04/05 110 Years, 39 Days 
55 F 12 /03/ 1895 13/01/07 111 Years, 307 Days 
56 F 12 /06/ 1895 16/09/05 110 Years, 96 Days 
57 F 19 /06/ 1895 11/05/06 110 Years, 326 Days 
58 F 10 /07/ 1895 15/01/06 110 Years, 189 Days 
59 F 20 /01/1896 30/01/06 110 Years, 10 Days 
60 F 4 /03/ 1896 28/06/09 113 Years, 116 Days 
61 F 1 /07/ 1896 15/03/07 110 Years, 257 Days 
62 F 16 /08/ 1896 12/03/07 110 Years, 210 Days 
63 F 4 /10/ 1896 02/11/09 113 Years, 29 Days 
64 F 3 /11/ 1896 26/12/07 111 Years, 53 Days 
65 F 22 /11/ 1896 27/05/09 112 Years, 186 Days 
66 F 23 /11/ 1896 02/08/11 114 Years, 252 Days 
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67 F 6 /12/ 1896 12/01/07 110 Years, 37 Days 
68 F 11 /02/ 1897 02/11/08 111 Years, 265 Days 
69 F 10 /06/ 1897 02/09/07 110 Years, 84 Days 
70 F 1 /08/ 1897 02/05/08 110 Years, 275 Days 
71 F 27 /09/ 1897 15/11/07 110 Years, 49 Days 
72 F 19 /10/ 1897 06/04/08 110 Years, 170 Days 
73 F 21 /10/ 1897 15/06/09 111 Years, 237 Days 
74 F 15 /01/1898 05/04/08 110 Years, 81 Days 
75 F 12 /02/ 1898 04/07/08 110 Years, 140 Days 
76 F 21 /02/ 1898 11/04/08 110 Years, 50 Days 
77 F 3 /04/ 1898 03/05/08 110 Years, 30 Days 
78 F 1 /06/ 1898 24/04/09 110 Years, 327 Days 
79 F 12 /08/ 1898 16/03/09 110 Years, 216 Days 
80 M 23 /08/ 1898 26/10/08 110 years, 64 days 
81 F 15 /11/ 1898 11/01/10 111 years, 57 days 
82 F 23 /12/ 1898 alive 113 years e 53 days 
83 F 23 /02/ 1899 18/06/11 112 years, 115 days 
84 F 3 /04/ 1899 alive 112 e 317 days 
85 F 5 /04/ 1899 20/09/09 110 years, 168 days 
86 F 21 /06/ 1899 28/02/11 111 years, 252 days 
87 F 21 /07/ 1899 17/08/11 112 years, 27 days 
88 F 11 /08/ 1899 24/06/10 110 years, 317 days 
89 F 7 /10/ 1899 29/03/10 110 years, 173 days 
90 F 27 /11/ 1899 18/02/11 111 years, 83 days 
91 F 29 /11/ 1899 alive 112 years e 77 days 
92 F 25/01/1900 02/01/11 110 years, 342 days 
93 F 11/02/1900 07/04/11 111 years, 55 days 
94 F 03/03/1900 alive 111 years e 348 days 
95 F 03/05/1900 27/12/11 111 years, 238 days 
96 F 28/06/1900 12/01/11 110 years, 168 days 
97 F 16/08/1900 03/06/11 110 years, 260 days 
98 F 02/10/1900 09/10/10 110 years, 7 days 
99 F 21/10/1900 03/07/11 110 years, 255 days 
100 F 19/11/1900 23/01/12 111 years, 65 days 
101 F 08/12/1900 18/06/11 110 years, 192 days 
102 F 14/02/1901 22/08/11 110 years, 189 days 
103 M 18/02/1901 alive 110 years e 361 days 
104 F 04/06/1901 alive 110 years e 255 days 
105 F 24/06/1901 30/08/11 110 years, 67 days 
106 F 20/07/1901 09/08/11 110 years, 20 days 

 

Chart1:  People over 110 years in Italy, Source Wikipedia updated to 14/12/2012 
 
 
 


