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Abstract  
 

Artificial intelligence is cycling into another peak of enthusiasm right now with long-time evangelists like Kurzweil 
redoubling their hyperbole and Elon Musk suggesting that the odds are “a billion to one” that we are not already 

living in an AI simulation matrix. There is a new wave of attention within the formerly silent fields of economics, 

strategy, and management from those like Agrawal, Gans, and Goldfarb (2018) who see the lower prices of AI-

powered “prediction” reshaping entire industries. Others more skeptical see genuine human reasoning of the kind 

needed to, e.g., make firm-level strategic decisions, impossible for machines to duplicate and safe from encroachment 
for the foreseeable future. In this paper, I look at whether we have achieved human-like implemented AI (HLI-AI), a 

question which requires an exploration of what cognition and intelligence fundamentally are. I then look at what would 

be needed to build it, and then suggest a distinction between HLI-AI and human problem solving AI (HPS-AI)—the 
former is what we do not currently have, the latter is implemented in a wide variety of (non human-like) techniques that 

solve human-relevant problems. Finally, I suggest a way forward for reasonable expectations of the role for HPS-AI in 

the socio-techno world.         
 

Introduction 
 

We are in another peak of enthusiasm for artificial intelligence. AI-startups are pouring into entrepreneurship 

incubators like TechStars and Y-Combinator. AI-based companies are getting venture capital funding at record rates. 

And the popular press is awash in stories about the forthcoming mass extinction of jobs by AI systems, Kurtzweil‘s 

(2001) prediction of the merging of human consciousness and AI systems by 2045, and Elon Musk‘s declaration that 

we are already living a simulation matrix, all fueled the seemingly incontrovertible evidence of self-driving cars, object 

identification systems that surpass human object identification, IBM‘s Watson winning Jeopardy, and Google‘s 

AlphaGo beating the best Go players in the world. Surely, we are on the very cusp of AI not just facilitating most 

aspects of our everyday interactions, but reshaping economic landscapes, strategic decision-making, and everything 

from our sex lives with sex-specialist robots to the absorption of our very consciousness at the point of Singularity. 

This seeming inevitability has spurred worries of a Terminator-like future and solving the problem of how to program 

morality into our AI offspring is seen to be of critical importance before they gain full independence from us. 
 

According to Lotfi Zadeh, the founding father of one AI technique known as ―fuzzy logic‖, in 1956 a cover story in the 

NY Times predicted that every home would have a robot attending to the dishes and the laundry within five years. 

Since then the predictions and the hyperbole have never stopped and cycled through peaks and troughs over the 

decades. Alan Turing (1950) said, ―I believe that at the end of the century the use of words and general educated 

opinion will have altered so much that one will be able to speak of machines thinking without expecting to be 

contradicted.‖ In 1965, Herbert Simon said, ―Machines will be capable, within twenty years, of doing any work that a 

man can do.‖ And, Marvin Minsky suggested (1965) that, ―within a generation… the problem of creating ‗artificial 

intelligence‘ will be substantially solved.‖ Turing, Simon, and Minsky turned out to have overestimated AI and 

overestimated the path of progress from Turing‘s Universal Turing Machine.  
 

The refrain remains the same: ―Yes, past predictions were overly optimistic but this time we are certain that AI will 

take over the world.‖ Famously, the CIA during the Cold War was deeply interested in anything that might help 

automate the translation of decrypted Soviet messages, but early attempts at translating a sentence like, ―The spirit is 

willing but the flesh is weak‖, resulted in ―The vodka is good but the meat is rotten‖. The failed return on the huge 

investments in AI by the US and British governments led to a report to the UK Parliament from Sir James Lighthill in 

1973, dubbed ―The Lighthill Report‖, that clarified that depth and extent of AIs failures and all but entirely ended 

funding for AI and precipitated the first AI Winter of the 1980‘s. ―Artificial Intelligence‖ would remain a dirty term for 

decades to come. No self-respecting researcher would describe their work as ―artificial intelligence‖ but rather as 
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pattern recognition, object identification, search algorithms, Bayes Nets, evolutionary algorithms, convolutional neural 

networks, back propogation optimization, or any of a variety of other more specific techniques.  

AI is once again sexy and startups are no longer shy about using the term in their mission statements and self-

descriptions. Indeed, whereas previously nothing was AI, now all those computational techniques are unabashedly AI. 

Have we achieved human-like AI? If you take the popular press seriously the answer is, ―yes‖. fMRI machines can now 

―read your thoughts‖, Facebook built two AI systems that ―developed their own secret language‖ only they could 

understand, AlphaGo has not just matched human creativity but exceeded it with novel Go moves, and we already have 

self-driving vehicles with fewer accidents per mile than humans.  
 

In what follows I want to step back and look at whether we have actually attained human-like implemented AI (HLI-

AI) and suggest, along with others like the world‘s leading roboticist Rodney Brooks of MIT, that we have not. Doing 

so requires getting a bit clearer about what exactly human intelligence and cognition actually are in the first place. 

Toward that end I will go through a primer on what may be the best theory of the human mind so far. Doing so will 

show clearly that we haven‘t achieved HLI-AI and what it will take to achieve HLI-AI in the future. It will also make 

clear the source of the common errors among experts and layperson alike. The most common errors are thinking that 

the human mind is just a computer (not an infrequent refrain even among neuroscientists), thinking that we have AI 

systems that are built ―just like‖ the human mind, or that the human mind has a one-dimensional scale of power (in the 

form of bits processed per second) whichAI systems will surpass with CPU speed improvements. Additionally, it will 

make clear the naive optimism of Doug Lenat and data mining proponents who say that, ―all we need is more data‖. 

Rather, we don‘t have a quantity problem; we have a theory quality problem on both the computer side and the human 

side of the fence. 
 

Still, AI has made strides recently and the responsibility for those advances does, it is true, lie in both the huge 

increases in data and the modest increase in CPU speeds. But there has been no advance in algorithms for about 35 

years, or as Marcus (2016) said more bluntly, ―there has been no progress‖ [in the quest to create HLI-AI full stop]. 

The advances we see are not HLI-AI, they are advances in our computational efforts to solve problems that humans 

care about, they are advances in human problem-solving AI (HPS-AI) which utilize an enormously wide variety of 

relatively old computational techniques. IBM‘s Watson is a veritable everything-but-the-kitchen sink approach to 

building an AI system, although unfortunately one that hasn‘t generalized to a successful and profitable medical 

diagnosis system as IBM had hoped. We have hacked and brute-forced our way into better object recognition and better 

self-driving cars. But there are limits to these hacks and limits to HPS-AI in general and it‘s important to understand 

what they are.  
 

After showing a path forward for the achievement of true HLI-AI in the future, I attempt to locate a more realistic and 

less hyperbolic place for HPS-AI and find a useful place for it in a socio-techno integrated world where AI systems are 

less like independent and self-reliant persons and more like goal-specific systems that become deeply integrated into 

the habits of our lives, our firms, and the social systems that we are enmeshed within. 
 

The Computational Theory of Mind 
 

We know surprisingly little about how the mind works. The currently most popular theory of the mind began as a guess 

using the computer as a powerful metaphor. The universal Turing machine was seen not just as an answer to the 

Hilbert‘s Entscheidungsproblem, or a precise specification of ‗computation‘ for which mathematics was in desperate 

need, but almost immediately viewed both as something that could manifest human-like intelligence one day and 

conversely a powerful formalism that extended beyond mere metaphor, but actually describe what the mind was—

literally a computer. 
 

This wasn‘t the first metaphor used to understand the mind. The early Myth of Golem suggested that humans were clay 

with souls magically infused by a wise blacksmith or God himself. Later metaphors grew from advanced hydraulic 

mechanical system with microscopic levers and tubes that drove the ―robots‖ in the Palace of Versailles, creatures that 

appeared to be alive. The advance of deterministic science reinforced this idea of the mind as some kind of 

deterministic device too and set the stage for the Computational theory of mind where the ―soul‖ is the software and the 

body, made of clay, hydraulics, or other mechanical components is mostly irrelevant. 
 

The other available option for a theory of the mind at the time of Turing‘s invention was Norbert Weiner‘s 

―cybernetics‖ theory (1965) but most found the hundreds of pages of mathematic integrals overwhelming while the 

universal Turing machine, by contrast, was based upon simple first order logic. A universal Turing machine could be 

implemented on almost any type of hardware—brain tissue, tin cans, erasable tape, or silicon. Similarly, the thinking 

went, the human mind needed some kind of hardware upon which to be implemented but the critical work was done by 

the software.  
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The Computational Theory of Mind implied a future where with enough work we could decode the software that 

constituted the ―code‖ of the mind. Just as a computer manipulates representational symbols, the mind manipulates 

representational symbols. Those symbols are processed according to rules and those rules were taken to be the very 

same rules of first order logic. It‘s all very neat and tidy and doesn‘t suffer from the messy mathematics of Weiner‘s 

cybernetics. 
 

The Computational Theory of Mind (CTM) proved too simple and attractive for the world to ignore. Most of the 

greatest thinkers of the day couldn‘t resist its appeal and enthusiastically and explicitly embraced it as a grand unifying 

theory of the mind and cognition that swept across psychology, cognitive science, linguistics, organizational behavior, 

economics, and affected almost every known field in some way or other. 
 

What exactly does CTM postulate? 
 

1) That the mind is a computer. 

2) As such, the hardware implementation of the mind is mostly irrelevant; it‘s the software that counts.  

3) The fundamental unit that is manipulated by the software is the representation. 

4) Representations are discrete entities that can isomorphic ally map to objects in the real world. 

5) Human action is the result of retrieving the relevant representations and performing inferences upon them in a way 

so as to plan the next behavior. 

6) As such, humans are essentially information processing devices too. 
 

The Embodied Cognition Theory of Mind  
 

Unfortunately, the last few decades have proven the Computational Theory of Mind to be false. To Quote Robert 

Epstein (2016): ―Your brain does not process information, retrieve knowledge or store memories. In short: your brain is 

not a computer.‖ 
 

Here is what we are not born with: information, data, rules, software, knowledge, lexicons, representations, algorithms, 

programs, models, memories, images, processors, subroutines, encoders, decoders, symbols, or buffers – design 

elements that allow digital computers to behave somewhat intelligently. Not only are we not born with such things, we 

also don‘t develop them – ever. 
 

We don‘t store words or the rules that tell us how to manipulate them. We don‘t create representations of visual stimuli, 

store them in a short-term memory buffer, and then transfer the representation into a long-term memory device. We 

don‘t retrieve information or images or words from memory registers. Computers do all of these things, but organisms 

do not (p2).  
 

Epstein‘s claims might appear bold but are part of the larger, evidence-based theory—the embodied cognition theory of 

mind—that rejects CTM and the fundamental analogy that the mind is to the software as the body is to the hardware 

(Lakoff 1987; Brooks, 1992; Lakoff and Johnson 1999; Varela, Thompson, and Rosch, 1991; Talmy, 2000; Barsalou, 

1999; Talmy, 2000; Nöe, 2004; Matlock, 2004; Gallagher, 2005; Gallese& Lakoff, 2005; Wheeler, 2005; Feldman, 

2006; Dreyfus, 1979, 1992, 2007; Nanay, 2016).  
 

Embodied cognition does not have a unified formalism like CTM does with the Turing Machine. It rejects the 

fundamental tenets of CTM 
 

1) The mind is not a computer. 

2) As such, the hardware implementation of the mind is not irrelevant. 

3) Representations are important but whatever they turn out to be they are not simple, discrete units manipulatable by 

some ―language of thought‖ or simple logic. 

4) Representations are not discrete entities that isomorphic ally map to objects in the real world. 

5) Human action is not mererly the result of retrieving the relevant representations and performing inferences upon 

them in a way so as to plan the next behavior. 

6) Humans trade in information but are not merely or essentially information processing devices.    
 

The fundamental unit is not the abstract representational symbol, but rather human experience instantiated in neural 

activation patterns and it is from human experience and neural activity that the vast and diverse canopy of human 

cognition derives. There is a broad range of empirical work supporting this claim. Buccino G., Riggio L., Melli G., 

Binkofski, F. , Gallese V., and Rizzolatti G. (2005), Pulvermueller, F., M. Haerle, & F. Hummel (2001), and 

Tettamanti, M., Buccino, G., Saccuman, M.C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S.F. 

and Perani, D. (2005), have all found that thinking of some motor activity activates areas of the motor cortex that fire 

when that activity is actually executed. Thinking about chewing activates the motor cortex involved in actual chewing. 

Thinking about kicking activates the portion active when actually kicking.  
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And reading about grabbing activates the motor cortex actually involved when grabbing. There is also extensive work 

built from response-time tests that supports this view (e.g., Stanfield &Zwaan, 2001; Zwaan, Stanfield, Yaxley, 2002).  
 

This should strike us as nothing short of profoundly shocking. We understand a word that we read, hear, or speak 

because that word stimulates the very neural activity involved in the activity described by the word. We understand the 

word‘s concept because it is grounded in human experience of the activity described by the concept.  
 

We simulate the experience. This is the simulation theory of semantics, or ‗simulation semantics‘ for short. If I ask you 

whether it‘s possible to fit 3 chicken eggs in your mouth you will (if you‘re like most people) imagine yourself 

attempting to put them in your mouth and in doing so you will activate the very same neural structures that are active 

when you are actually doing it, even though you‘ve never done it before. Simulation semantics is the fundamental tenet 

of Embodied Cognition and makes it clear why the body is not merely a ―hardware layer‖ but critically important to 

cognition—the body is the most prominent conduit for human experience that is then later simulated when only 

imagined or cognized instead of acted. Indeed, one view of emotions (Prinz, 2004) is that they are merely a generalized 

result of the state of one‘s body and that when we are thinking about such emotions we are re-imagining such states.  
 

A common retort is: ―That‘s fine when one is thinking about bodily activities but the vast majority of thinking involves 

high-level, abstract concepts that have nothing to do with bodily experience, like unemployment, irrational numbers, 

hierarchical governance, or the weak electromagnetic force.‖ As it turns out extensive research has been done that 

shows just how high-level concepts are ultimately grounded, mostly through neurally instantiated metaphorical 

mapping, in human bodily experience (especially Lakoff & Johnson, 1987, 1999, and Lakoff and Nuñez‘s Where 

Mathematics Comes From, 2001). A sentence like, ―the relationship was moving to fast for me‖ rely on a metaphorical 

mapping of the abstract concept, ‗relationship‘, to vehicle speed for which we have extensive bodily experience. 

―France fell into a recession and couldn‘t find a way out‖ maps the high level concept of ‗recession‘ to the experience 

of falling into a physical depression.  
 

Others, like Nanay (2016) have argued that decision-making itself is fundamentally a simulation process too. When 

deciding whether you want to take a new job and move to a different city you imagine yourself in the new city and 

compare that experience to your experience of your current city. If not just bodily concepts, but abstract concepts, 

reasoning, and decision-making are fundamentally based upon human experience then we face an obvious hurdle to 

any AI system built upon representational symbols that are not grounded in such experiences—such symbols will have 

no meaning for them.  
 

Simulation semantics‘ greatest strength is precisely AI‘s greatest weakness in that there is no way to explain how 

discrete, disconnected symbols in a computational processing device get any meaning. This has come to be known as 

the ―symbol grounding problem‖, a variant of which is known as the ―frame problem‖. Google‘s AI language translator 

that translates from Mandarin to English doesn‘t understand Mandarin. It‘s just manipulating symbols according to pre-

established rules. Searle‘s Chinese Room Argument showed (1980) that you can‘t get from syntax to semantics and no 

seemingly brilliant translation computer understands anything that it is ―saying‖. It‘s not just that the human mind is 

not computational but rather that the fundamental organizing principle of the human mind bares no relation to the 

fundamental process of computation—the manipulation of discrete representations that are not grounded in human 

experience. Far from being an irrelevant implementation layer, the ―bodily hardware‖ is the indispensable and the 

essential means through which all of mind and cognition is structured.   
 

Reflect for a moment upon how we learn best. We learn easily and most rapidly when we are conscious and having a 

vivid experience of the material we‘re studying. Those cassette tapes that attempted to teach you a language while you 

were sleeping aren‘t around anymore because it turns out that learning while you are sleeping isn‘t so effective. Most of 

our cognitive work is unconscious but most of those unconscious abilities and knowledge got their through conscious 

experience. Conscious human experience is critical for learning, structuring our knowledge, making decisions, 

engaging socially, and achieving intellectual feats.     
 

How to Build Real HLI-AI 
 

It should now be readily apparent then that no research lab or firm‘s R&D department has built human-like instantiated 

AI (HLI-AI) since no computer has human-like experience. We have not replicated human-like cognition. For all the 

novels and movies and stories about a sentient artificial systems, they simply do not exist. One might think that all we 

need to do is replicate the very neural mechanisms that cause human experience in humans (and other animals which 

presumably have such experiences too). There‘s just one problem—we currently do not have the slightest clue how 

human experience comes to be. In philosophy this is known as ―the problem of qualia‖ or simply as ―the hard problem‖ 

or ―the problem of consciousness‖. Many have tried to find neural correlates of consciousness but those who have 

dedicated their careers to this problem have either given up in the face of abject failure or gone partially mad trying.  
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So, how then might we begin to approach the problem of building HLI-AI? Well, we might not have the faintest clue 

how to build an experiential machine but we can build the correlates of the conduits of bodily experience—namely the 

sensory modalities.  
 

We can‘t build actual vision or haptics or hearing or taste or sensorimotor proprioception into a machine but we can 

build the their correlates in the form of a wide array of electromagnetic radiation sensors, sound sensors, etc. This has 

started to happen with self-driving vehicles and robots which are employing more and more sensor systems of different 

types. The more sensory systems the more the AI system can use those diverse modalities to triangulate upon features, 

patterns, and objects in the external world and begin to utilize that diversity in its computations. Mosquitos can detect 

CO2 emissions. Bats can echolocate with sonar. Humans have a wider array of sensory modalities but not those. 

Generally, evolution has seen fit to endow the creatures with the greatest number of sensory inputs the greatest degree 

of qualitative experience. Amoeba and protozoa have limited input systems and (as far as we can tell) limited 

experience, while spiders and centipedes are more advanced, and mammals like dogs, dolphins, and humans at the far 

end of the spectrum, lacking things like infrared detection but possessing a wide array of sensory systems. Why does a 

greater diversity of input systems seem to correlate with a higher degree of conscious experience? We have no clue; it 

just seems to be one of those empirical facts the cause of which we will probably only understand when we understand 

what the neural correlate of conscious experience actually is.  
 

So, adding diverse input systems into an AI engine, unlike with living organisms, won‘t get us very far along the path 

to true human experience but it will at least allow us to establish one of the empirically necessary stepping stones to 

move in the direction of a future HLI-AI. 
 

The Most Common Errors in AI 
 

Given the fundamental structural difference between AI and human cognition we can see that the two most egregious 

errors are 1-thinking that the human mind is a computer, i.e., that CTM (the Computational Theory of Mind) is correct; 

and 2-thinking that a computer is a human mind, i.e., that it is engineered the same way that the human mind is, or 

implements a ―partial‖ human mind. Neither is true and until we see a way forward to engineering human experience 

from scratch they will remain false and HLI-AI nothing but a distant dream. 
 

There are, however, many who believe that first-order logic is how the mind works, that the mind has discrete symbols, 

and that all we need is enough data and a computational system will magically sprout genuine human intelligence 

(HLI-AI). The implicit premise behind this claim is that we already know exactly how the mind works and it works 

more or less like a computer, a computer hungry for more data (coincidentally enough). Kurzweil has said (2001), in a 

book entitled, The Age of Spirtual Machines that ―We have already reverse engineered the cerebellum, and by 2029, 

reverse engineering of the brain will be complete.‖ Someone should have told the neuroscientists that we already 

finished the cerebellum and that they can continue ―reverse engineering‖ the rest of the brain.  
 

If you believe that we already understand how the mind works and that it works like a computer than you wind up 

saying some deeply dubious things. Doug Lenat said, ―once you have a truly massive amount of information integrated 

as knowledge, then the human-software system will be superhuman‖ (Lenat, 2001). Lenat has received millions of 

dollars of investments for CYC and expended millions of man-hours inputting sentences, translated into first order 

logic, from newspapers and other media like, ―cats have four legs‖, ―the German economy is on the rise‖, and ―Albany 

is the capital of New York‖. The hope? That once some threshold is crossed—perhaps at 1 billon or maybe 1 trillion 

sentences?—that genuine consciousness will magically spring to life… in some extended network that lacks eyes, ears, 

emotions, proprioceptions, or any sensory inputs at all. 
 

It‘s tempting to think that this is an isolated incident of deep confusion by some extremist but current discussions of AI 

are awash in the glory of big data with many suggesting that AI has only failed so far because we have not had the data 

or the CPU power to process that data (using exactly the same algorithms that we‘ve historically used to process that 

data). Kurzweil (2001) has famously suggested that ―brain power‖ can be represented in terms of how many 

―instructions‖ per second can be processed. ―MIPS‖ is ―millions of instructions per second‖ which computers achieved 

around 1970. By 2020 he says that computer will achieve human intelligence because they will exceed the speed of 

human information processing (see figure 1).  
 

Unfortunately, he never says how it‘s possible to quantify the number of instructions per second a brain can process. To 

think that the brain can be analyzed in terms of discrete processing instructions is to presume that the human brain is 

simply a Universal Turing machine. Of course, this is false.  Figure 1 (from Kurzweil, 2001) 
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Figure 1 (from Kurzweil, 2001) 
 

We know the brain is essential to cognition and consciousness but there is broad misunderstanding about how advanced 

neuroscience is. Neuroscience has no clue how we experience the taste of black pepper or the mechanisms by which 

general anesthetics render us unconscious but also nothing about how ―computations‖ are carried out… other than a 

claim that neurotransmission seem to be important. Even here some in neuroscience suggest that it‘s not the neurons we 

should be focusing on but rather the otherwise ignored glial cells!  
 

There is no doubt that computers can do interesting things and have advanced our productivity in all sorts of ways. And 

that recent advances have been made possible by better access to bigger data. But processing speed has long since 

fallen short of Moore‘s Law that predicted a doubling of processing speed every 18 months, and we have not had any 

real breakthrough in new algorithms for 35 years.  
 

Object identification systems in images have made great strides recently (see figure 2) with the best systems seen as 

having surpassed the ―5% human error rate for object identification‖ in 2015. It turns out the claimed 2% error rate of 

such AI systems is not quite accurate. To ―correctly identify‖ an object on the standard Imagenet recognition test a 

system just needs to list the correct object as one of five possible objects in order of priority, so when shown an image 

of a camel the system‘s response is deemed correct if the system responds with: ―penguin, butcher knife, dog, camel, 

hay bail‖—the 4th out of 5 suggestions.    
 
 

 

 
Figure 2 (image credit: the Electronic Frontier Foundation) 
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Further, ―adversarial attacks‖ on image classification systems have shown that the classification techniques employed 

by AI systems bear no resemblance whatsoever to human classification. A image correctly classified as a ―camel‖ when 

modifications to its pixels are made that are utterly undetectable to humans might get classified by the AI system as a 

―tree‖. Undetectable pixel modifications caused a system to classify a school bus and a temple both as an ―ostrich‖. 

These same kind of adversarial attacks can occur with pattern recognition systems that process audio or text or, 

frighteningly enough, the image received by a self-driving car from a stop sign to make it look to the system like a 

green stop-light instead.   
 

Additional data does not help block such adversarial attacks. Indeed, additional data can make it worse and reveal 

biases in the data pool that was not otherwise known, as when a Google classifier embarrassingly mis-categorized the 

image of an African American male as a ―gorilla‖, an error that stemmed from the paucity of African Americans in the 

large Facebook derived data set Google utilized. ―We‘re still very, very far from visual intelligence, understanding 

scenes and actions the way humans do‖ (Ali Farhadi of the University of Washington, quoted in Lohr, 2016).   
 

Part of the problem is that these classification systems rely upon a single input source, an image in a binary file format, 

while humans have a rich multi-modal and experience-laden history with most images that it encounters which give 

humans a panoply of other ways of triangulating upon an object so as to more likely identify it. 
 

Computers do not ―think‖ like humans. And more data will not magically enable computers to think like humans. It is 

not a quantity problem. It is a quality problem—a problem of understanding exactly how human cognition works. Right 

now, we only have one or two pieces of the puzzle of human cognition in place and both point to multi-modal sensory-

rich human experience being critical, something that no AI system possesses, or has any hope of possessing in the near 

future. The obsession among software engineers to build human-like AI does nothing to help actually build it since in 

order to build it, we must first understand human cognition and that is not the work of engineers but rather the purview 

of cognitive scientists, neuroscientists, psychologists, philosophers, and anthropologists. 
 

Human-Like Implemented AI (HLI-AI) vs. Human Problem-Solving AI (HPS-AI) 
 

HL-AI is AI implemented in the very same way as human cognition. Getting clear on the question about whether any 

AI is implemented the way human cognition is implemented necessitated a dive into the structure of human cognition. 

We know very little about it, but do know that it‘s structured around the diversity and multi-modality of human 

experience.  
 

This point alone highlights the fact that HLI-AI does not exist and that we are not close to a time when it will exist 

(contrary to Kurzweil, Lenat, the singularity evangelists, and others). There has, however, been great success at solving 

problems that we as humans are interested in (HPS-AI). The range of problems solved spans the mundane, like text 

editors, to advanced credit card fraud detection systems, self-driving vehicles, and translation engines. These HPS-AI 

systems are similar to enormously useful inventions like the steam engine which generated power in a way we thought 

only horses could previously, or the breakthrough in extracting oil from shale reserves. HPS-AI, similarly, offers a way 

to achieve some goal we deem relevant. But there‘s no confusion that the steam engine actually replicates the human 

ATP energy production system, or that shale oil extraction works the same way that we squeeze juice from an orange. 
 

Similarly, there should not be any confusion that Google‘s language translation engine works like human translation, or 

that AlphaGo is implemented the way humans play Go. The goals are the same across machine and human; the 

implementations are radically distinct, and that‘s perfectly fine. A steam engine beat John Henry over a hundred years 

ago. We shouldn‘t be surprised that AlphaGo recently beat the world‘s best Go players.  
 

Tremendously useful goals can be achieved by manufactured systems—whether the steam engine or AlphaGo. But, for 

whatever reason, goals that are more ―intellectual‖ when achieved by artificial systems are immediately seen by media 

and experts alike as indicative of ―true‖ human intelligence. Engineers keep trying everything they can to squirm away 

from the most obvious fact about human cognition—that it involves human experience caused (mysteriously) by the 

interactions of our bodies in the environment, driven by wet grey matter. Our current AI systems, HPS-AI, are not HLI-

AI and we don‘t yet have a path forward for how they could become HLI-AI.        
 

Finding Discriminating Alignment for HPS-AI 
 

HLI-AI is off the table. So, instead of conflating HLI-AI and HPS-AI, how might we understand HPS-AI better and 

more reasonably so as to understand its proper domain of application and find discriminating alignment among the 
various goals that we as humans find relevant on the one hand, and the kinds of goals that HPS-AI systems have a shot 

of achieving? 
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After all, firms need to make strategic decisions about the future of their businesses, investors need to make investment 

decisions, Engineers need to choose projects that have a chance of completion, and consumers need to choose products 

that work. Some domains of application offer better chances of success for HPS-AI (which I will now simply refer to as 

‗AI‘) systems than others. We need to understand where it will excel and where it won‘t.  
 

Agrawal et al. (2018) offer an economist‘s, and less hyperbolic, view of AI suggesting that its fundamental effect is a 

reduction in the cost of ―prediction‖. As the cost of paying a translator to convert a page of Spanish to English falls 

from $300 to $0 this has enormous effects on a wide range of economic activities. ―Prediction costs‖, they claim, will 

continue to fall. But there are a couple of oddities here: a) They have an idiosyncratic view of ‗prediction‘ such that any 

system that reduces knowledge uncertainty, not just future uncertainty, is engaged in what they call ‗prediction‘. b) 

There are no suggestions about what domains will see the greatest decline in ―prediction costs‖; they offer no 

discriminating alignment.  
 

Let‘s attempt to provide some discriminating alignment for AI systems, but without the baggage of errors in thinking 

that such systems are implementing human-like AI, HLI-AI. 
 

System That Will Excel 
 

1- Information processing and vs. environmental interaction. 

One need only look at the state of robots today compared to the grand predictions of the 1950‘s to see how difficult 

progress has been here. Turing would‘ve never believed that our best selling robots two decades into the third 

millennium would only be a floor cleaner and some assembly line machines. Interacting with the real physical world is 

extraordinarily difficult. The invention of a robot cockroach that could forage for food, evade predators, reproduce, and 

engage in rudimentary communication with its fellow iCockroaches would garner a science medal and be the invention 

of the century. Despite trillions of dollars of precisely built manmade roadways, providing an incredibly controlled and 

limited environment (unlike the cockroach‘s environment), self-driving vehicles are still not quite yet fully automated. 

The greatest recent success in environmental interactions, arguably, has been SpaceX‘s vertically landing rockets—it 

took 70 years from the time of the invention of the rocket to get it to reliably land vertically so it could be reused. So, 

for the foreseeable future, systems that do information processing (broadly speaking) will continue to radically outpace 

those that attempt any kind of advanced interactions with environment. The challenge for those information processing 

systems is not being able to rely on environmental interactions and all the benefits that provides for true understanding 

of the world. 
 

2- Environment-interacting systems must have multi-modal inputs. 
 

If you do need to make a bet on some form of AI that is attempting to interact with the environment then, roughly 

speaking, it must have a wide array of multi-modal input sensors. This is by no means a guarantee of success but rather 

a necessary prerequisite for its success.  
 

3- Goals that afford clear algorithms. 
Some goals afford clear algorithmic steps toward their attainment; others don‘t. Turing designed the computer as an 

algorithmic processing machine and they are algorithm processors par excellence. DeepBlue beating Gary Kasporov in 

chess was seen as a clear sign at AI was actually HLI-AI, but of course chess is a game with precise rules, a precise and 

abstract table environment, and clear movement options. Winning chess is, in other words, an algorithmic and near 

ideal goal for an AI system, which Turing himself knew when he programmed the first chess playing software into the 

giant Bletchy Park vacuum tube computer used for decrypting the Nazi Enigma codes in the 1940‘s.    
 

It is, of course, often difficult to determine which goals are amenable to algorithmic approaches and which are not, 

especially when probabilistic and statistical techniques are employed with greater frequency. But insofar as this is 

possible then those goals amenable to such algorithmic approaches will fare better. 
 

4- Reliable statistical regularities. 
 

The ever-increasing use of statistical techniques, and inductive techniques in general, need phenomena that is reliably 

approachable via induction and statistics. Famously, regression techniques afford manipulatable grey areas where 

whether or not there is a reliable correlation can be swayed by the kind of analysis chosen. The housing market crash of 

2009 wasn‘t foreseen precisely because the regression performed saw statistical regularity and overlooked the 

interdependent nature of the different housing markets. So, inductive formalisms are difficult to employ successfully 

but the generalization remains true—Finch bird mating patterns are highly regular; bond price time series are highly 
irregular. Systems built around regularities in the former are much more likely than the latter to succeed. 
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Systems Less Likely to Excel 
 

The ground work done above also helps us draw boundaries around some areas of non-alignment where AI systems 

will be less likely to achieve interesting goals. Of course most of the goals that we find most interesting are the least 

likely achievable. Alibaba founder, Jack Ma, has said that ―In 30 years, a robot will likely be on the cover of Time 

Magazine as the best CEO‖. This is not an uncommon refrain from techno-evangelists—that soon AI systems will be 

―just like‖ humans only better in all sorts of ways. 
 

John McCarthy coined the term, ―artificial intelligence‖ in 1955 when a year later he helped organize a 2 month 

summer computing workshop at Dartmouth College. The workshop, which included other luminaries like Claude 

Shannon and Marvin Minsky believed that they would have human ―common sense‖ more or less completely reverse 

engineered and programmable into machines within 8 weeks. More than a half a decade later and we are still nowhere 

close to ―common sense‖ or ―general artificial intelligence‖ as it is sometimes called. Why not? 
 

1-HPS-AI won’t succeed in domains that require possession of human-like concepts. 
Humans concepts are the building blocks from which human reasoning, judgment, and decision-making are built. How 

close are we to human-like concepts? We already know that such concepts are structured around human-like 

experience. This was the fundamental result of the embodied cognition research movement. But perhaps we have a few 

rudimentary concepts in place at this point in our enormous technologically advanced state.  
 

The Image net results illustrate otherwise. The currently most advanced AI systems do not and can not yet possess a 

relatively rudimentary concept like, ‗rose‘. And we know that they don‘t possess a human version of the concept of 

‗rose‘, despite the 98% object identification rate because modifying a few undetectable pixels in the image does not 

change our assessment of it as a ‗rose‘ but for an AI classification system that might be enough to change its 

assessment to ‗camel‘, ‗ostrich‘, or ‗school bus‘. Now think about the kinds of concepts required to make successful 

decisions as a CEO, concepts like ‗increasing market share‘, ‗collapsing economy‘, ‗employee unrest‘, ‗negotiating 

motivations‘, or ‗competitive advantage‘. If the robot CEO can‘t deal with the concept of ‗rose‘ without short-circuiting 

then how well will it do with any of those more abstract concepts? And we haven‘t even gotten the point of facile 

manipulation or modification or communication of those concepts. iCEO has a long way to go before it sits in an actual 

board room.   

2- HPS-AI won‘t succeed in domains that require human-like experience. 

This point should be obvious but it‘s also a less helpful guideline because the question under issue is precisely: ―Which 

goal domains will necessarily require human-like experience?‖ Self-driving vehicles have made good progress without 

building any actual human experience into the decision chain anywhere.  
 

Conclusion 
 

Arguably, the two best investment systems in the world involve one human (and associates)—Warren Buffet—who 

trades by simple and intuitive guidelines about the perceived value of a company vs its trading price, where 

determining value is more or less non-algorithmic. The other is Ray Dalio‘s Blackwater hedge fund which is fully 

automated. But here, the rules and the concepts like ―rising economy‖ and ―likelihood of the prime interest rate going 

up‖ were definitively human and the automated system was built to mimic those concepts through proxies (hacks) as 

best as possible. With enough work it‘s possible to hack one‘s way to an automated version of Buffet‘s ―quality‖ 

trading approach as well.  
 

But the point of the paper was to make a muddied distinction clear, the distinction between HLI-AI and HPS-AI. 

Despite endless proclamations to the contrary we haven‘t come anywhere near achieving HLI-AI. HLI-AI requires, 

fundamentally, human experience, if the system is to possess human cognition and human concepts that are structured 

by such experience. 
 

Still, HPS-AI has made interesting and useful progress. It will continue to do so in domains where the emphasis is on 

information processing, rather than environmental interaction, although  almost any progress on the latter affords huge 

opportunities. Those environmentally interactive systems must, for any chance of success, deploy a wide range of 

environmental sensors. Obviously, the systems with the best chance will tackle problems that are clearly algorithmic. 

And, finally, with the ever-increasing use of statistical techniques, successful systems will target domains where there 

are reliable inductive regularities. 
 

Laying out these areas of discriminating alignment should, it is hoped, offer a more reasonable path forward for 
understanding the areas where AI will afford a useful advantage and find a more firm position in the socio-techno 

environment.    
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